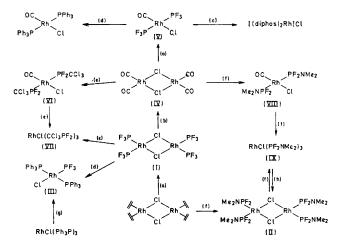
Synthesis and Ligand Exchange Studies of Fluorophosphine-Rhodium Complexes


By D. A. CLEMENT, J. F. NIXON,* and M. D. SEXTON

(Chemical Laboratory, University of Sussex, Brighton BN1 9QJ)

Summary Convenient syntheses and interconversions of fluorophosphine complexes of rhodium of the type (a) $L_2RhCOCI$, (b) L_3RhCI , (c) $[L_2RhCI]_2$, and (d) $L(Ph_3P)_2$ RhCl [L = fluorophosphine] are described: ¹⁹F n.m.r. studies establish the *trans*-stereochemistry of (a) and (d) and in the latter case provide evidence for exchange of both types of phosphine co-ordinated to the metal.

HIGH pressure syntheses of trifluorophosphine complexes of rhodium, e.g. $\mathrm{HRh}(\mathrm{PF}_3)_4$ and $\mathrm{MRh}(\mathrm{PF}_3)_4$ have been reported by Kruck.¹ We now describe alternative synthetic routes to fluorophosphine-rhodium complexes under much milder conditions using metal-carbonyl or metal-olefin precursors and report n.m.r. studies which indicate exchange between co-ordinated and unco-ordinated phosphine ligands.

The reaction between trifluorophosphine and the ethylene-rhodium complex² $[(C_2H_4)_2RhCl]_2$ at 60° readily affords high yields of the dark red, vacuum sublimable dimer $[RhCl(PF_3)_2]_2$, (I)[†] which was previously obtained only in very small yield by the high-pressure reaction between RhCl₃ and PF₃ in the presence of copper. Yellow needles of the dimeric $[RhCl(Me_2NPF_2)_2]_2$ complex (II) are also readily obtained by this route (see Scheme).

SCHEME. (a) = an excess of PF_3 ; (b) = CO; (c) = diphos; (d) = Ph₃P; (e) = CCl₃PF₂; (f) = Me₂NPF₂; (g) = PF₃; (h) = heat in vacuo.

Treatment of (I) with an excess of trifluorophosphine does not cause bridge cleavage, and all four PF₃ groups may be replaced by carbon monoxide affording the well-known [Rh(CO)₂Cl]₂ complex (IV).³ However, (I) does react with triphenylphosphine to give yellow crystals of *trans*-RhCl-(Ph₃P)₂PF₃ (III) which is also easily made from (PhP₃)₃-RhCl and PF₃.⁴ Similarly, the PF₃ groups are completely displaced from (I) by treatment with difluorotrichloromethylphosphine to give RhCl(CCl₃PF₂)₃ (VII). Significant differences are observed in the behaviour of trifluorophosphine and the other fluorophosphines (e.g. R_2NPF_2 and CCl_3PF_2 ; R = Me or Et, $R_2 = C_5H_{10}$) towards (IV). An excess of PF₃ fails to completely displace carbon monoxide and the volatile, bright red crystalline complex *trans*-RhCl(PF₃)₂CO (V) is formed almost quantitatively, whereas dialkylamino- and trichloromethyl diffuorophosphines and (IV) afford either the yellow-brown carbonyl-fluorophosphine complexes *trans*-RhCl(RPF₂)₂CO (IV) and (VIII) or the yellow-brown trisfluorophosphine complexes RhCl(RPF₂)₃ (VII) and (IX) depending on the amount of fluorophosphine used.

The trans-configuration of complexes (III), (V), (VI), and (VIII) was established by ¹⁹F n.m.r. studies. (V) is an example of an $[X_3A]_2$ spin system (X = fluorine; A = phosphorus), while both (VI) and (VIII) are $[X_2A]_2$ spin systems. Analysis of the spectra is facilitated because ${}^{1}J_{PF} \gg {}^{2}J_{(PMP')}$, (see ref. 5 for a fuller discussion), and the resulting ${}^{2}J_{(PMP')}$ values (V) (62 Hz); (VI) (52 Hz), and (VIII) (49 Hz) are of interest because they are an order of magnitude smaller than values found in analogous transsquare planar platinum(II) phosphine complexes.⁵ Furthermore, the magnitude of ${}^{2}J_{(PMP')}$ in the dialkylaminodifluoro-

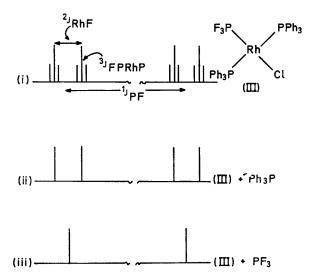


FIGURE. Line diagram showing effect on 19 F n.m.r. spectrum of (III) of adding small amounts of Ph₈P and PF₈.

phosphine derivatives indicates that phosphorus rather than nitrogen is the donor atom.

The ¹⁹F spectrum of a very carefully purified sample of (III) in benzene consists of a widely spaced doublet (coupling with phosphorus, ¹ $J_{\rm PF}$ 1286 Hz) each line of which is split further into a doublet (coupling with ¹⁰⁸Rh, ² $J_{\rm RhF}$ 32 Hz) of triplets (coupling with two equivalent phosphorus nuclei of the Ph₃P groups, ³ $J_{\rm FP}$ 7 Hz) (see Figure). Addition of

[†] The norbornadiene rhodium complex $[C_7H_8RhCl]_2$ may also be used, and Dr. M. A. Bennett (personal communication) has independently carried out the same reaction with the cyclo-octene complex RhCl(C_8H_{14})₂ (see following communication.)

small amounts of Ph₃P immediately leads to a collapse of the triplet pattern as free and co-ordinated Ph₃P molecules undergo exchange, but the doublet pattern due to ¹⁹F-¹⁰³Rh is preserved (ii).

When a pressure of PF_{3} is maintained above the solution of (III) the spectrum changes to a simple doublet (iii) indicating loss of 103Rh-19F coupling as the co-ordinated and unco-ordinated PF3 groups undergo exchange. The fluorine

- ¹ T. Kruck, Angew. Chem. Internat. Edn., 1967, 6, 53.
 ² R. Cramer, Inorg. Chem., 1962, 1, 722.
 ³ J. Powell and B. L. Shaw, J. Chem. Soc. (A), 1968, 211.
 ⁴ M. A. Bennett and D. Milner, Chem. Comm., 1967, 581.
 ⁵ J. F. Nixon and A. Pidcock, Ann. Rev. N.M.R. Spectroscopy, 1969, 2, 345.
 ⁶ C. C. Barlow and J. E. Nixon. Larger, Nuclear, Chem. Latter, 1966, 2, 292.
- ⁶ C. G. Barlow and J. F. Nixon, *Inorg. Nuclear Chem. Letters*, 1966, 2, 323.
 ⁷ J. F. Nixon, *J. Chem. Soc.* (A), 1967, 1136.
 ⁸ H. B. Gray and A. Wojcicki, *Proc. Chem. Soc.*, 1960, 358.
 ⁹ A. Wojcicki and F. Basolo, *J. Amer. Chem. Soc.*, 1961, 83, 525.

chemical shift of the complex, $(+15.4 \text{ p.p.m. ref. } \text{CCl}_3\text{F})$, is as expected^{6,7} significantly to low-field of the free ligand. These results are of interest in connection with other exchange studies on the related RhCl(CO)(Ph₃P)₂ complex.^{8,9}

We thank the S.R.C. for financial support for D.A.C. and M-D.S.

(Received, October 28th, 1969; Com. 1636.)